Examination Control Division 2081 Bhadra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	IV / I	Time	3 hrs.

Subject: - Hydropower Engineering (CE 704)

✓ Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt <u>All</u> questions.

✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.

1. List the various government organizations involved in the development of the hydroelectric power sector in Nepal and describe their responsibilities.

[1+3]

2. Suppose you are a senior consultant engineer with the responsibility of being the team leader for a small hydropower project. Describe the steps and activities that your team must carry out to conduct a feasibility study for this hydropower project.

[8]

3. The mean monthly flows of a river in a typical year are as follows:

[10]

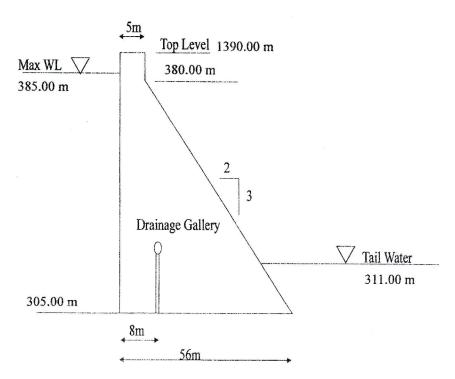
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Flow (m ³ /s)	93	89	115	209	593	1011	2014	2542	1450	830	196	118

The gross available head is 229 m, and the average head loss in transition is 12m. The efficiencies of the turbines, gearboxes and generators are 94%, 92% and 99% respectively. 10 m³/s of water must be left in the river for downstream users. The other data are as follows:

Fixed cost: US\$ 1200×10^6

Variable cost (present worth value): US\$ 500/kW

Energy price: US\$ 48/Mwh for primary and secondary energy


Interest rate: 12%

Economic life of the project: 50 years

Determine the best installed capacity, firm energy, secondary energy, total energy and plant factor of a run-of-river plant.

- 4. Sketch a diagram showing the general arrangement of the components of a typical ROR plant. List the functional requirements of the headworks of an ROR plant. [3+2]
- 5. The figure below shows the section of a concrete gravity dam. Neglecting the effects of earthquakes, check the stability of the dam. Also, calculate the intensity of the shear stress on a horizontal plane near the toe. Assume the unit weights of water and concrete are 10 kN/m^3 and 24 kN/m^3 , respectively. The allowable stress and average shear strength in the concrete may be taken as 2500 kN/m^2 and 2000 kN/m^2 , respectively. Take $\mu = 0.70$.

[12]

- 6. Derive the expression for seepage flow from a homogeneous earthen dam section with a horizontal filter at the toe. [4]
- 7. What is the purpose of a spillway? Write down the types of spillways based on their key features. Explain one of them with a neat sketch. [1+1+3]
- 8. Determine the minimum critical elevation of the top of the reservoir, which has a spillway with a maximum discharge capacity of 5127 m³/s. The spillway has five openings, each 12.2 m wide. The crest level of the spillway is 1250 m. Assume a discharge coefficient of 0.6 for the broad crested weir.

 [4]
- 9. Design a desander using the following data:

Discharge = $16 \text{ m}^3/\text{s}$, particle size to be settled $\geq 0.2 \text{ mm}$, particle fall velocity = 0.022 m/s, horizontal flow velocity = 0.2 m/s.

[7]

[8]

[5]

[5]

[3]

Consider two basins with a factor of safety for basin area of 1.5. Use length-to-breadth ratio of 6. Assume a sediment concentration of 1 kg/m³, a sediment particle density of 2650 kg/m³, a settling time of 1 day, a sediment packing factor of 0.5, and an additional 10% discharge for flushing.

- 10. Design a forebay for a power plant with a design discharge of 14 m³/s. The system uses two penstock pipes, each with a length of 500 m and diameter of 2 m, to convey water. Assume a detention time of 3 minutes and a flow velocity of 0.2 m/s in the forebay. Additionally, design an appropriate spillway length for the forebay.
- 11. How can the economical diameter of a penstock be determined using mathematical analysis?
- 12. Determine the overall efficiency of a Francis turbine developing 32 MW of power under a net head of 54 m. It is provided with a draft tube, which has an inlet diameter of 3 m and is set 2.2 m above the tailrace level. A vacuum gauge connected to the draft tube indicates a reading of 4.8 m of water. Assume the efficiency of the draft tubeis 78%.
- 13. Explain different types of powerhouses based on placement.

Examination Control Division 2081 Baishakh

Exam.		Back	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	ĪV / I	Time	3 hrs.

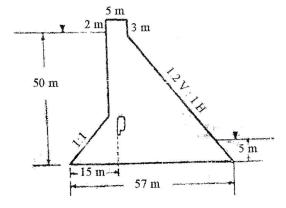
Subject: - Hydropower Engineering (CE 704)

✓ Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt All questions.

✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.


- 1. a) Table below shows the inflow for one reservoir.
 - i) By assuming the mean inflow as the draft, develop mass-curve of the reservoir.

ii) Determine storage capacity and length of critical period.

iii) Determine storage capacity if the draft is only 80% of the mean inflow and compare with storage capacity of (ii).

Month	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Inflow m ³ /s	38	32	27	26	15	10	8	7	6	4	3	3

- b) Explain briefly the procedure for obtaining Licenses for Hydropower development of 5 MW RoR hydropower project as per the provision of hydropower development policy 2001.
- 2. a) Calculate the forces and the principle stress and the shear stress at the toe and heel of the gravity dam section shown below. Check the dam against sliding, crushing, overturning and tension. Do not consider the forces other than self-weight, hydrostatic pressure and uplift pressure. Assume allowable compressive stress for the material of the foundation is 50 kg/cm², allowable crushing stress for the material of the dam body is 10.5 kg/cm², friction coefficient is 0.70 and uplift coefficient is 0.45.

- b) What do you mean by intake? Sketch a generalized intake structure for a RoR diversion project.
- 3. a) A hydropower electrical project has a concrete lined tunnel of 5.0 m diameter operating under a gross head of 200 m. Discharge through tunnel is 28 cumec and having surge tank of 300 m² at the end of tunnel. Head loss due to friction under a steady state condition is 2.5% of gross head. Assume friction factor of tunnel to be 0.015. Find

Total length of tunnel

- Maximum upsurge and downsurge in the tank
- Calculate factor of safety of surge tank

[4]

[12]

[4]

[12]

[6]

	b)	Check whether hydraulic jump type stilling basin is required or not for a hydropower project. Given that discharge is 100 cumec flowing through 10 m long overflow spillway. The height of spillway crest is 30 m from downstream bed with a slope of river as 1 in 500, Manning's roughness coefficient is 0.018 and coefficient of discharge is 0.75.	[6]
	c)	Describe the design procedure of forebay with neat sketch.	[4]
4.		Discuss hydropower development cycle with flow chart. Explain the type of studies done in detailed engineering design stage of hydropower project.	[2+4]
	b)	Describe sediment deposition mechanism with neat sketch in a storage type hydropower plant. Briefly discuss sediment management techniques.	[3+3]
	c)	Draw a general layout of the powerhouse using a vertical axis Francis turbine.	[4]
5.	a)	Design specific speed, turbine diameter and setting of Francis turbine of a hydropower project having net head of 150 m and design discharge of 25 cumec. Take turbine efficiency as 82%	[6]
	b)	Design a settling basin for particle size = 6 mm, sp. gravity = 2.65, absolute viscosity = 1.34 gm/cm-s, temperature of water = 20°C, discharge = 12 m ³ /s. Calculate depth of sediment assuming concentration is 5000 ppm. Assume 15% flushing discharge and performance coefficient of Hazen = 0.16. Draw neat sketch of plan and section.	[8+2]

*104

Examination Control Division 2080 Bhadra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	IV / I	Time	3 hrs.

Subject: - Hydropower Engineering (CE 704)

- Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

	En El	CHO DING	
IIE	DA	DI	
Lan Lie	MA	110	

VVACOT

- 1. Briefly discuss the institutional set up in hydroelectricity development in Nepal with flow chart.
- 2. Mention different phases of hydropower development cycle. What factors do you consider in pre-feasibility and feasibility study of hydropower projects? [2+2+2]
- 3. The water turbine at a hydel storage plant produces the 1000 HP when working under a net head of 30 m and with an overall efficiency of 80%. The inflow in the reservoir during a year is given below.

 [4+4]

-	Month	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
	$Q (Mm^3)$	90	80	73	80	70	98	120	80	96	105	100	75

Find, i) Minimum capacity required ii) Total quantity of the water wasted (Assume the reservoir is full in the beginning of the year).

4. How do you optimize the plant capacity of a RoR Project? Discuss.

ons [1+5]

[4]

[7]

[3+3]

[6]

[4]

[6]

[4]

5. Define elementary profile of a gravity dam. How do you proportionate the dimensions of an elementary profile if the reservoir is full?

6. Determine the seepage line for a homogeneous earthen dam of height 22 m and top width 6 m retaining 20 m depth of water in the reservoir. The slope of the upstream and downstream faces of the dam is 45°. Also determine the seepage discharge, if the length of the dam is 3 km and the value of the coefficient of permeability of the dam material is 3 × 10⁻³ mm/s.

7. Define spillway. Explain siphon and shaft spillway with neat sketch. [1+3+3]

- 8. Draw a neat sketch showing the typical arrangement of components of a headworks of a RoR hydropower project. Write down the importance of its intake. How do you decide the location of an intake in a river?

 [2+2+2]
- 9. Design a settling basin for a design discharge of 6 cumec. The basin is designed to be removed particle size of 0.25 mm. If the depth of basin is 3 m and settling velocity 2.5 cm/sec, find the dimensions of the basin considering turbulence.
- 10. Briefly discuss on the hydraulic design consideration of the surge tank and pressurised hydraulic tunnel.
- 11. Design a forebay with following data:

 Design discharge = 20 m³/s, penstock length = 300 m

 Detention line = 3 minutes, diameter of penstock = 2.2 m.
- 12. a) What are the functional requirements to fix the approximate dimension of the power house?
 - b) Design of a pelton turbine for a hydropower plant having net head 312.5 m and discharge 5 cumec. Take efficiency of turbine 85% frequency 50Hz and velocity coefficient 0.98.

Examination Control Division

2080 Baishakh

Exam.		Back	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	IV / I	Time	3 hrs.

12. Describe components of a power house in hydropower plant based on their functional use.

Subject: - Hy	ydropower	Engineering	(CE704))

✓ Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt <u>All</u> questions.

✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.

1. How do you estimate the gross and net hydropower potential between two sections of the river?

2. Explain different phases of hydropower development cycle. Draw the layout plan and section of RoR type hydropower project with headrace canal. [4+4]

3. A RoR hydropower plant is proposed in a river. Using marginal cost and benefit method optimize the installed capacity with following data.

Interest rate = 12%; Energy price = \$0.08/Kwh; Fixed cost = $$60 \times 10^6$; Variable cost (Electro-mechanical) = \$650 /KW; Annual O/M = 3% of variable cost; Project life = 35 years.

% Time	8.33	16.67	25.0	33.33	41.67	50.0	58.33	66.67	75.0	83.33	91.67	100
Power(KW)	805	604	564	407	300	167	130	115	96	89	74	65

4. A concrete gravity dam has the following data:

Maximum water level = 550.00

Bed level = 470.00

RL Top of Dam = 554.00

The d/s slope of 0.67:1 and stats at RL of 545.00

US face is vertical

Centre line of drainage gallery – 8.0 m from the u/s face

Consider only weight, water pressure and uplift

Calculate the maximum vertical stresses at the toe and heel of the dam. Also calculate factor of safety against sliding and over turning. Assuming 100% uplift pressure at heel, 50% at drainage gallery and zero at the toe. Take $\mu = 0.75$

- 5. How do you draw a phreatic line in a homogeneous earthen dam with a horizontal filter at toe? Discuss with neat sketch and mathematical expression.
- 6. What are the purposes of spillway? Explain with sketch different types of spillway gates. [2+4]
- 7. How do you evaluate losses in intakes? [6]
- 8. Find out the dimension of a settling basin with turbulence flow for a high head hydropower plant, which utilizes a discharge of 50 m³/sec. The sediment particles coarser than 0.2 mm (w = 1.5 cm/sec) have to be trapped in the basin. Draw plan and section showing major components and flushing arrangement.

9. Why lining is important in hydropower tunnels? Explain different types of linings. [2+4]

10. In a hydropower project the headrace tunnel of 4.0 m diameter and 4000 m length carries 20 m³/s discharges to the surge tank of 10 m diameter. The penstock from surge tank to power house has 3.2 m diameter and 700 m length. Considering the case of instantaneous closure, find the maximum height of surge tank required and time period of oscillation of wave. Assume friction factor = 0.018.

11. Determine number of turbines and diameter of runner for a power plant having 23 cumecs inflow, 20 m head, turbine efficiency 85% and speed 170 rpm, specific speed 230 rpm and speed ratio 0.76.

[8]

[6+2]

[4]

[8]

[10]

[6]

[6]

Examination Control Division 2079 Bhadra

Exam.	Regular						
Level	BE	Full Marks	80				
Programme	BCE	Pass Marks	32				
Year / Part	ĪV / Ī	Time	3 hrs.				

Subject: - Hydropower Engineering (CE 704)

Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt <u>All</u> questions.

✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.

 Outline the challenges for hydropower development in Nepal. Discuss hydropotential in Nepal.

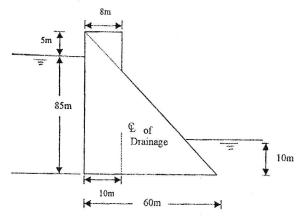
[2+2]

2. Discuss hydropower development cycle with flow chart. Draw the layout plan and section of a storage hydel plant with to power house.

[4+4]

3. In a Nepali river the mean monthly flow in a year 2021 is given below.

Month	Discharge (m ³ /s)	Month	Discharge (m³/s)
Jan	50	July	125
Feb	40	Aug	150
March	30	Sept	120
April	25	Oct	100
May	10	Nov	75
June	75	Dec	70


- a) Draw the flow duration curve.
- b) The power available at mean flow of water if available head is 100 m at the site and overall efficiency of the plant is 85%.

[4+4]

- 4. Section of the gravity dam is shown below.
 - i) Calculate maximum vertical stresses at the heel and toe of the dam.
 - ii) The major principle stress at the toe of the dam.
 - iii) Calculate factor of safety against overturning and sliding.

Take $\Upsilon c = 24 \text{ kN/m}^3$ and $\sigma a = 2500 \text{ kN/m}^2$.

[10]

5. Discuss design criteria of an earthen embankment dam.

[6]

6. Why is the spillway provided in a dam? Mention with neat sketches the condition of providing a chute and shaft spillways. In which conditions a ski-jump type energy dissipater is provided below a spillway.

[1+4+1]

7.	Why is a vortex formed in intake? Discuss the hydraulic conditions for no vortex formation.	
8.	Design a continuous type settling basin with neat sketches for a hydropower plant using following data:	
	Settling velocity = 5 cm/sec Turbine discharge = 10 m ³ /sec Particle size to be removed = 0.15 mm Assume other necessary data if necessary.	[8]
9.	What is the economical diameter of penstock? How do you determine economic diameter by graphical method?	[1+5]
10.	A RoR hydel plant has a circular surge tank of 13 m diameter at the end of 1.8 km long headrace pressure tunnel with 3.95 m diameter. The penstock system consists of 4 numbers, 400 m long, 1.30 m diameter each. Calculate maximum up-surge, down-surge and time of oscillations if frictional factor for tunnel and penstock are 0.016 and 0.025 respectively.	
	A proposed hydropower development having a net head of 90 m, design discharge of 40 m ³ /s uses Francis's turbine. Taking turbine efficiency 0.86. Calculate specific speed, turbine diameter and setting of the turbine.	[8]
12.	Mention the types of powerhouse. Draw the plan of typical powerhouse having three units.	
		[1+3]

ş

Examination Control Division 2079 Baishakh

Exam.		Back	41.
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	IV / I	Time	3 hrs.

Subject: - Hydropower Engineering (CE 704)

✓ Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt All questions.

✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.

1. a) A hydropower plant is planned to be designed in Nepalese river, where mean monthly flows for a typical year are as follows.

Months	Jan	Feb	Mar.	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
m^3/s	4.4	3.9	3.4	4.2	4.2	16.5	78.1	108.9	52.8	22.0	9.9	6.4

Other data pertaining to the plant are as follows:

Design discharge = $18 \text{ m}^3/\text{s}$

Full supply level = 2250 masl

Turbine centerline = 1650 masl

Dia of 4 km long tunnel = 3 m, f = 0.014

Dia of 1 km long penstock = 2.2 m, f = 0.012

Hydraulic efficiency = 95%, Turbine efficiency = 93%, Generator efficiency = 99%, Transformer efficiency = 99%

Considering only the frictional loss,

- (i) Compute installed capacity, primary and secondary energy to be produced from the power plant assuming that 10% of minimum monthly flow to be released downstream. What is the plant factor? [2+2+2+2]
- (ii) The developer is interested to develop a daily peaking reservoir for 4 hours. What will be the capacity of the reservoir to satisfy daily peaking requirement? [4]
- b) Discuss about the objective and the strategies of the hydropower development policy-2001. List out the various hydropower development institutions in Nepal. [3+1]
- 2. a) A homogeneous earthen dam has the following data: Dam crest level = 300.00 masl; Deepest river bed level = 278.00 masl; HFL in the reservoir = 297.50 masl; Dam crest width = 4.50 m; Dam u/s slope = 3:1; Dam d/s slope = 2:1 and coefficient of permeability of the dam material = 5×10^{-4} cm/s. Determine the phreatic line of the dam section and the discharge passing through the dam.

b) What measures are applied for treatment of foundation before construction of a gravity dam? Discuss briefly.

[4+4]

[4]

c) Find the minimum safe width for an elementary profile of a gravity dam of 18 m height. The specific gravity of the dam material is 2.25. Consider both no and full uplift condition. [4]

3.	a)	Design a fore bay structure with turbine discharge of 14.5 m ³ /s with two penstocks 1.8 m diameter each. Take retention time 3 minutes and limiting velocity 0.22 m/s. Draw neat sketch of plan and section.	[6]
	b)	Determine the discharge through a chute spillway of 250.00 m long ogee crest, if the height of the spillway crest above the u/s approach channel s 10.50 m, the width of the approach channel is 2500 m, and the head over the crest is 4.50 m. Take $C_d = 0.85$.	[4]
	c)	What are the most commonly used intakes in Run-of-River projects in Nepal? What factors do you consider while selecting the site for intake location?	[3+3]
4.	a)	If you have to develop a small hydropower project of capacity 10 MW in a cost effective manner in a remote area of Nepal. What are the stages of study that have to be undertaken before the construction start?	[8]
	b)	A Pelton wheel develops 70 kW under a head of 100 m of water, it rotates at 400 rev/min. The diameter of penstock is 200 mm. The ratio of bucket speed to jet velocity is 0.46 and overall efficiency of the installation is 85%. Calculate	
		(i) Volumetric flow rate (ii) Wheel diameter	[2+2]
	c)	Specify with neat sketch the location of a spiral casing and draft tube used in hydroelectric power generation. Mention their importance.	[2+2]
5.	a)	Find out the dimension of a settling basin with turbulence flow for a high head hydropower plant, which utilizes a discharge of 25 m 3 /sec. The sediment particles coarser than 0.2 mm (w = 1.5 cm/sec) have to be trapped in the basin. Draw plan and section showing major component and flushing arrangement.	[6+2]
	b)	The design discharge through the tunnel of a hydropower project is 25 m ³ /sec is conveyed by two number of penstock to the turbine. The length and diameter of tunnel is 4 km and 8m respectively, friction factor of tunnel/is 0.016 and length of each penstock is 500 m, diameter and friction factor of penstock is 2m and 0.04 respectively and velocity of wave in penstock = 1600 m/sec. If the surge tank of 15 m diameter has been provided at the end of the tunnel, find the following for full load	
		rejection. (i) Maximum up-surge (ii) Maximum down-surge (iii) Water hammer pressure (iv) Time of oscillation of wave	[8]

Examination Control Division 2078 Bhadra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	IV/I	Time	3 hrs.

Subject: - Hydropower Engineering (CE 704)

Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt <u>All</u> questions.

✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.

1. a) Answer the followings:

(i) What are the top three hydropower producing country in the world till 2020?

(ii) What are the three existing largest power plant in Nepal (with capacity)?

(iii) What are the first three hydropower plant (capacity and year) from the history of Nepal?

b) A peaking ROR project in western Nepal with net head of 250m has following river flow data:

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec River flow 100 80 80 105 200 500 1100 1200 800 350 200 (m^3/s) 120

The storage capacity avaliable for this project is 1100 million m³. This storage capacity is utilized for dry months (Nov-May) during which the plant is used as peak load plant operating 4 hours a day. Considering design flow as Q₂₅, calculate maximum power generation (in MW) and ratio of wet season energy to dry season energy.

2. a) The discharge of water over a spillway 12m wide is 300m³/s into stilling basin of the same width. The lake level behind the spillway has an elevation of 50m and river water surface elevation downstream of stilling basin is 25m. Assume a 10% energy loss in flow down the spillway, find invert level elevation of the flow of the stilling basin so that hydraulic jump forms in the basin. Select an appropriate USBR stilling basin and list all the dimensions.

b) What is economic diameter of penstock? A steel penstock with an internal diameter of 1.25m, supplies water at a head equivalent to 18kg/cm². There is a possibility of a 20% increase in pressure due to transient conditions. The design stress and efficiency of the joint may be assumed to be 1025kg/cm² and 85% respectively. Compute the thickness of the penstock required.

3. a) Design and draw section of a side intake for a project in which river bed level is 3315.0 masl. Weir crest level is fixed to 3317.5 masl. The highest flood level in 100 years returned period is 3319.55 masl. The canal water level is fixed as 3317.3 masl. The turbine discharge of a period is 1.45m³/s. Assume other suitable data. Take cylindrical trashrack bar with 10mm thick and 100mm spacing.

b) Determine the basewidth of a 20m high trapezoidal concrete dam having a vertical upstream face and top width of 5m. Design water depth is 18m. There is no tail water Ignore earthquake, silt and ice loads. Take e=B/6, σ_{concrete}=30MPa, σ_{foundation} = 80MPa, τ_s = 6MPa. Specific weights of water and concrete are 10kN/m³ and 24kN/m³ respectively. Assume suitable data, if necessary.

[10]

[4]

[12]

[2+4]

[6]

[6]

	c)	For embankment dam on pervious foundation, soil seepage underneath the dam post a serious problem. Briefly discuss the consequences of this problem and how it reduced?	es is
4.	a)	Draw a layout (plan and section) of ROR hydro project for following cases:	[4]
	e e	(i) Alignment with pressure tunnel (ii) with free surface flow	[6]
		Name salient features also (draw with representative contours).	
		Design a settling basin (i) with intermittant flushing (ii) continuous flushing for hydroelectric plant by using the simple settling theory. The design discharge of the plant is 5m^3 /s and depth of the basin is 3.20. Take w=2.5cm/s and λ =1.5. Comparation of the plant is 3.20. Take w=2.5cm/s and λ =1.	e e
5. 8	1)	Consider the design of a multi-jet nelton wheel with	[10]
		conditions as given below: Head = 200m Flow rate = 4m ³ /s	[8]
		Nozzle velocity coefficient = 0.98 Wheel dia. = 1.47m	
	1	Mechanical efficiency = 86% Blade speed to jet speed ratio = 0.47 Jet dia. to wheel dia. ratio = 0.113	
i e	((i) Calculate the wheel rotational speed (rev/min). (ii) Calculate the power output (MW). (iii) Determine no. of nozzle required. (iv) Calculate specific speed of machine.	
b) E	Explain the general arrangement for a power house. How would you fix the appropriate dimensions of a power house?	
c)		Discuss different types of intakes used in storage hydel plants. ***	[2+2] [2+2]

Examination Control Division 2076 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	IV/I	Time	3 hrs.

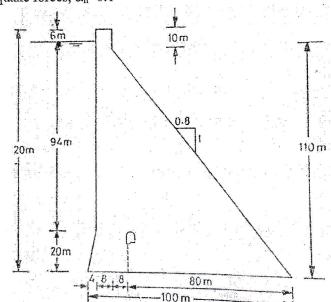
Subject: - Hydropower Engineering (CE 704)

✓ Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt All questions.

✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.


1. a) The monthly flows of a stream over the period of the driest year on record are as shown below: [7+3+2]

Month	J	F	M	A	M	J	J	Α,.	S	0	N	D
Flow $(\times 10^6 \text{m}^3)$	4.0	2.25	5.0	1.25	0.5	0.75	0.5	0.75	1.25	1.25	5.0	6.25

- (i) Estimate the maximum possible uniform draw-off from this stream and determine the reservoir capacity to achieve the uniform draw-off and the minimum initial storage to maintain the demand.
- . (ii) If the reservoir has only a total capacity of $8\times10^6\text{m}^3$ with an initial storage of $4\times10^6\text{m}^3$, determine (a) the maximum possible uniform draw-off and (b) the spillage.
- b) Describe various types of hydroelectric scheme based on hydraulic characteristics.
- 2. a) Determine the principal stresses at the toe and heel of the dam shown in figure for the reservoir full conditions. Consider the following forces:

(i) Self weight (w_c=25kN/m³)

- (ii) Water pressure (w=10kN/m³)
- (iii)Uplift pressure
- (iv) Silt pressure the depth of silt as 20m
- (v) Earthquake forces, $\alpha_h=0.1$

_

[4]

[10]

- b) Determine the maximum and minimum vertical stresses to which the foundation of the dam will be subjected from the following data: Total overturning moment about toe(ΣM_o)=1.2×10⁶ kN-m Total resisting moment about toe (ΣM_R) = 2.5×10⁶ kN-m Total vertical force above the base (ΣV) = 6×10⁴ kN Base width of dam = 55m. Slope of d/s face = 0.8:1
- Also calculate the maximum principal stress at the toe. Neglect tail water depth. [2+2+2]

 3. a) What are the main parts of non-pressurized and pressurized ROR intake? Present the general arrangement of such intakes in a neat proportionate sketches. [2+6]
 - b) Find out the dimension of a setting basin with turbulence flow for a high hydropower plant, which utilizes a discharges of 60 m³/sec. The sediment particles coarser than 0.2mm (fall velocity w=1.5 cm/sec) have to be trapped in the basin. Draw plan and section showing major components and flushing arrangement, neat and proportionately.
- 4. In a pumped storage hydropower project, water is delivered from the upper impounding reservoir through a low-pressure tunnel and four high-pressure penstocks to the four pump-turbine units. The elevation of the impounding reservoir water level is 500m, and the elevation of the downstream reservoir water level is 200m. The maximum reservoir storage which can be utilized continuously for a period of 48h is 15×10⁶m³. [6+3+3+2+2]

The low pressure tunnel is constructed as follows: length = 4km; diameter=8m; friction factor, f=0.028.

The high pressure penstocks (4 nos) are constructed as follows:

length of each penstock = 500m;

diameter = 2m,

friction factor, f = 0.016;

turbine efficiency when generating = 90%;

generator efficiency (16 poles, 50Hz) = 90%;

turbine efficiency when pumping = 80%;

barometric pressure = 10.3m of water;

Thoma's cavitation coefficient, $\sigma = 0.043 \, (N_s/100)^2$.

- a) Determine the maximum power output from the installation
- b) Estimate the specific speed and specify the type of turbine
- c) Determine the safe turbine setting relative to the downstream reservoir water level.
- d) If a simple surge chamber 6m in diameter is provided at the end of the low-pressure tunnel, estimate:
 - (i) the maximum upsurge and downsurge in the surge chamber for sudden rejection of one unit and
 - (ii) the maximum downsurge for a sudden demand of one unit.
- a) Write down advantages and suitability of chute type spillway, shaft spillway, ogee
 type spillway and roller gate. [2+2+2+2]
 - b) Why is vertical shaft arrangement preferred while laying turbine and generator in a powerhouse? Explain briefly.

 [4]
 - c) State the objectives of the current Hydropower Development Policy of Nepal. Discuss the necessary amendment required to improve the existing scenario of the Hydropower Development Sector. [2+2]

Examination Control Division 2076 Ashwin

Exam.	1800	Back		
Level	BE	Full Marks	80	
Programme	BCE	Pass Marks	32	
Year / Part	IV/I	Time	3 hrs.	

Subject: - Hydropower Engineering (CE 704)

Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt All questions.

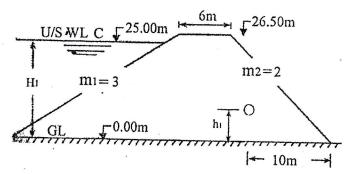
 ✓ The figures in the margin indicate <u>Full Marks</u>.

✓ Assume suitable data if necessary.

1. a) During a low water week a river has an average daily flow of 40 m³/s with a fluctuation during the day required a pondage capacity of approximately 30% of the daily discharge. A hydroelectric plant is to be located on the river which will operate 6 days a week, 24 hours a day, but will supply power at a varying rate such that the daily load factor is 50%, corresponding to which the pondage required is equal to 0.2 times the mean flow to the turbine. On Saturday all the flow is ponded for use on the rest of the days. If the effective head on the turbines when the pond is full is to be 25 m and the maximum allowable of fluctuation in pond level is 1m, find

(i) the surface area of the pond to satisfy all the operating conditions

(ii) the weekly output at the switch board in kwh. Assume turbine efficiency 80% and generator efficiency 90%


[5+5]

b) Explain the working principle of RoR, PRoR and ST plants with the help of figures. Also comment on the suitability of those plants in the context of Nepal.

[6]

2. a) An earthen dam of homogeneous materials with a drain pipe is shown in figure. Determine the co-ordinate of phreatic line and specific discharge passing through the body of dam. coefficient of permeability = 15×10^{-4} m/s.

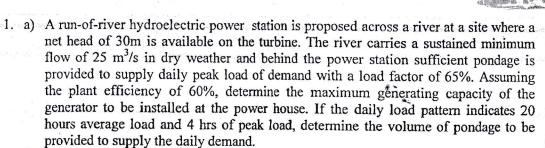
[6]

b) Explain the necessity of grouting and drainage galleries in concrete gravity dam. Draw an elevation view of a concrete gravity dam showing the alignment of drainage galleries and series of grout holes.

Drawing a section of concrete gravity dam show arrangement of vertical formed drain, trap drain and drainage hole. [2+4+4]

3. a) Design a settling basin for a high head project in a river which utilizes 60 m³/s discharge and gross head of 300 m. The sediment particles larger than 0.15 mm (fall

		velocity = 1.5 cm/s) need to be trap in the basin. Consider effect of turbulence as well. Also draw plan and section of the basin showing major components.	[8+4]
	b)	Explain various remedial measures that help to control the deposition of sediments in RoR project.	[4]
4.	a)	A penstock carries 8 m ³ /s of water at head of 25m. The cost of pipe line in place is given by US\$250hd ² per meter length, where h = head and d = diameter of the pipe. Annual fixed charges are 8% of the pipe line cost. The estimated head loss in friction	
		is $\frac{0.025Q^2}{12.1d^5}$ per m length of the pipe. Efficiency of the turbine is 80% and selling price	
		of the power is US\$500 per kW per annum. Calculate the most economic diameter of the penstock.	[8]
	b)	It is proposed to form a hydraulic jump in a stilling basin to dissipate the energy below spillway. Depth of flow changes from 1.5m to 4m. Calculate the discharge over the spillway if the length of the crest is 120m.	[3]
	c)	Mention the four different types of spillway and describe each of them in short. Also write down the functions of the spillway.	[4+1]
5.	a)	What are the opportunities and challenges for Hydropower development in Nepal? Write your comments on the Hydropower Development Policy – 2001 of Nepal.	[4+2]
	b)	A Francis turbine works under a head of 25m and produces 11760 kW while running at 120 rpm. The turbine has been installed at a station where atmospheric pressure is 10 m of water and vapour pressure is 0.20 m of water. Calculate the maximum height of the straight draft tube for the turbine.	[6]
	c)	Draw a section of vertical axis Francis turbine in a powerhouse showing different parts of powerhouse.	[4]
		· · · · · · · · · · · · · · · · · · ·	r .1


**

Examination Control Division 2075 Chaitra

Exam.	Regular / Back				
Level	BE	Full Marks	80		
Programme	BCE	Pass Marks	32		
Year / Part	IV/I	Time	3 hrs.		

Subject: - Hydropower Engineering (CE 704)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.

[4+4]

- b) You are developing 300 MW reservoir type project in a river basin of Nepal. Briefly mention what steps you would follow from planning to commissioning of the project.
- [5]
- c) What do you mean by pumped storage power plant? How it can benefit the Nepal's power sector?

[3]

2. a) Derive the equations for principal stress and shear stress at toe and heel of a gravity dam with tail water present and also considering hydrodynamic pressure produced by an earthquake.

[8]

b) Drawing section of concrete gravity dam show arrangements of vertical formed drain, trap drain and drainage hole. What are the general criteria for size, depth and pattern of grout holes for certain grouting in gravity dam foundation.

[2+2]

- c) Find the seepage discharge through the homogenous earthen embankment dam with 3m width of central impervious core as shown in figure. Given:
 - (i) Height of the dam = 45m with free board as 3m,
 - (ii) Upstream water level = 42m, top width of the dam = 8m,
 - (iii)U/S and D/S side slope of the dam = 1V:3H
 - (iv) Coefficient or permeability of the dam material = 4×10^{-6} m/s and that of impervious core = 5×10^{-8} m/s.

L=126m

Sm

Impervious Core

1V:3H

Ke

IV:3H

Ke

Xu

Ke

Xeq

Fig: Earthen Dam with impervious Core

[4]

a) Find the dimensions of the settling basin for a high head project of Himalayan river which carry a discharge of 30 m³/s and a gross head of 100m. The sediment size to be removed is up to 0.20mm and fall velocity ω = 2 cm/sec.

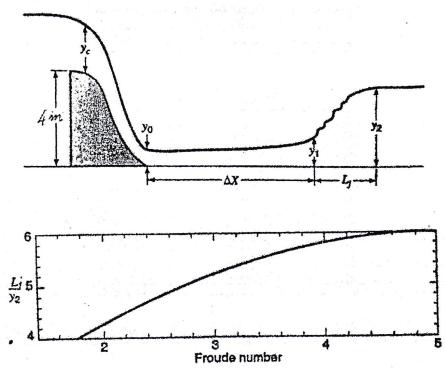
If the turbulence is considered, what will be the dimension of the basin? Check the length of settling basin using Velikanov's method given correction factor λ = 1.5.

[8]

b) What do you mean by intake? Write down its functions.

[1+2]

c) Determine the necessary length of a rack of a bottom intake with the intercepted flow of 8 m³/s and width of the rack is 10m. Inclination of the rack is 30°. Thickness, spacing and contraction factor of the bars are 10 mm, 15 mm and 0.82; respectively.


[5]

4. a) What are the functions of a Surge tank? Write down the formulas to calculate the maximum upsurge and down surge, time of oscillation and minimum area of Surge tank with usual notations.

[6]

b) Estimate the minimum length of the concrete apron (So = 0.001) for stilling basin downstream from an overflow spillway. The spillway crest is 15m long and consider a discharge of 115 m3/s. Manning's roughness factor n = 0.025. Assume the stilling basin is the same width as the spillway crest. Assume any other suitable data if necessary. Refer figure below.

[10]

5. a) A Pelton turbine has to be designed for the following data. Power developed = 6867 KW, net head = 350m, Overall efficiency = 80%, Speed = 550 rpm, coefficient of velocity (Kv) = 0.98 and speed ratio (Ku) = 0.46. Ratio of jet dia to wheel dia $\left(\frac{d}{R}\right)$ =1:12. Find discharge, number of jets, diameter of jet and diameter of wheel.

[6]

b) Name the major institutions involved in hydropower development sector in Nepal. Briefly outline the hydropower development policy of Nepal.

[4]

c) In a hydropower project the available river discharge is 300 m³/s and the net head is 30 m. If the speed of the turbine is to be 166.7 rpm and the overall efficiency is 88%, determine the number of units required for the turbine cases given below.

[3+3]

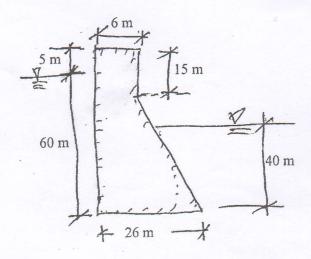
- (i) Francis turbines with specific speed not exceeding 267 rpm.
- (ii) Kaplan turbines with specific speed not exceeding 650 rpm.

Examination Control Division 2075 Ashwin

Exam.	qui and reffit !	Back	M Malany
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	IV/I	Time	3 hrs.

[4+2]

[6]


[4]

Subject: - Hydropower Engineering (CE704)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt <u>All</u> questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- What are the opportunities and challenges for Hydropower development in Nepal? Write your comments on the Hydropower Development Policy-2001 of Nepal.
- 2. Sketch and explain layouts of the run of river plant. Also explain the importance of storage hydropower plants over run of river plant. [3+3]
- 3. a) A RoR plant has a minimum flow of 30 m³/s and net head of 70 m. The overall efficiency of plant is 85%. Calculate the installed capacity of the plant (i) Without pondage (designed for pure RoR plant) and (ii) If the plant is designed for a peaking plant with 6 hours peaking. The plant has two set of unit such that one unit full capacity if operating during off peak hour. Total evaporation and other losses is 5% of the stored water.
 - b) Monthly flow volumes feeding a reservoir are given in the table. Determine the storage capacity required to supply the mean annual flow.

Month	1	12	3	14	15	6	7	8	9	10	11	12
Volume (10 ⁶ m ³)	296	386	504	714	810	1154	746	1158	348	150	223	182

- 4. a) Write about the "Middle third rule" in the design of concrete gravity dam? Describe with necessary derivation. [6]
 - b) A concrete gravity dam of given profile is purposed by a designer for implementation. The unit shear resistance and angle of resistance is 500 KN/m² and 35° respectively. $\gamma_{con} = 24 \, \text{KN/m}^3$, check the stability of dam against flotation, overturning and sliding.

5.	a)	Design a settling basin for a high head project in a river which utilizes $60 \text{ m}^3/\text{s}$ discharge and gross head of 300 m . The sediment particle larger than 0.15 mm (fall velocity = 1.5 cm/s) need to be trap in the basin. Consider effect of turbulence as well.	[7]
	b)	Design a hydraulic jump stilling basin for the flood discharge 28 m³/s/m flowing from an ogee spillway with the spillway crest 55 m above the downstream gravel river bed with a slope 1:1000 and Manning's roughness coefficient 0.028. Assume coefficients of discharge, depth and length are 0.75, 1.2 and 4.5 respectively. Also assume sp.gr of sediment as 2.65.	[10]
6.		scribe with governing equations the procedure to obtain the specific discharge through body of earthen dam with horizontal drain.	[6]
7.	a)	Find out the dimension of a forebay which accommodates a storage for 3 minutes of operation for a hydropower plant having following data:	[3]
		Design discharge = $20 \text{ m}^3/\text{s}$	
		Length of penstock = 300 m	
		Diameter of penstock = 2.20 m	
	b)	Discuss the various factors which govern the determination of economic diameter of a penstock. Find the wall thickness of penstock pipe if the internal diameter is 3.0 m which supplies water from a head of 220 m with a possibility of increase in pressure upto 40% due to transit condition. Take $\sigma_{st} = 1400 \text{kg/cm}^2$ and efficiency of	
		joint = 0.95.	[2+3]
8.	dis wit	termine the diameter of Francis turbine for a site where the net head is 110 m and charge 140 m ³ /sec having efficiency of 90%. Determine also the elevation of turbine th reference to the water surface in tailrace. Assume the turbine will have to drive a 50 cle generator.	[8]
9		nlain the different types of nower house use in hydronower project	[5]

Examination Control Division 2074 Ashwin

Exam.		Back	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	IV/I	Time	3 hrs.

Subject: - Hydropower Engineering (CE704)

✓ Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt All questions.

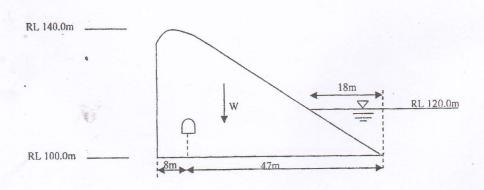
✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.

1. Discuss about the Hydropower Development Policy 2058 of Nepal.

[6]

2. What are the various stages of hydropower planning? If you have been appointed as a water resources engineer in Water Resources Ministry and you are assigned to undertake various investigations related to water resources field. Discuss field investigations you carry out at various stages of the Hydropower project.


[2+6]

3. The hydrograph of a typical river of Nepal follows the equation as:

 $Q_t = 5.589t^2 - 51.275t + 139.94$; where Q_t is mean monthly discharge in m^3/s and 't' is time in months counted as October as the 1^{st} month and so on. A hydropower plant has to develop in this river with net head of 150m and overall efficiency as 85% and the environmental flow is not considered. [3+3+4]

- a) Calculate the installed capacity and firm energy for RoR Project that will be developed for design discharge as Q₄₀.
- b) If the project has to design as a Peaking Run of the river (PRoR) Project for 6 hrs daily peaking (3hrs in morning and 3hrs in evening) and with design discharge as Q₄₀. What is the installed capacity of the PRoR Project? Assume that the project is designed such a way that 50% of available flow is used during the off peak hours and remaining 50% of available flow is stored for peak hour generation. Neglect all the losses.
- 4. a) Check the stability of the overflow section of the gravity dam shown in figure. Assume the weight of concrete, gates, piers and weight of water over crest, $W_{total} = 3.0 \times 10^4 kN$. Moment of weight of concrete, gates, piers and water above crest etc. about toe $M_{toe} = 10^6$ kN-m. Neglect all forces other than weight, uplift pressure and water pressure. Also check for tension. Take $\mu = 0.75$ and q = 1400 kN/m².

[10]

	b)	Design a hydraulic jump stilling basin for the maximum discharge of $25\text{m}^3\text{s}^{-1}\text{m}^{-1}$ flowing from an overall spillway, with the spillway crest 50m above the downstream gravel river bed with a slope $S_0 = 0.001$ and $n = 0.028$.	[6]
	c)	What are the purposes of spillway? What are the advantages of ogee shape spillway? Explain.	
5.	a)	With considering turbulent effect, design a settling basin to remove the sediment size greater than 0.3 mm diameter. Assume design discharge of the basin is 8m³/s and trap efficiency as 90%.	
	b)	Differentiate between pressurized and non-pressurized intakes.	[4]
6.	a)		
	b)	Discuss various shape of tunnel with their advantages.	[4]
7.	a)	A hydropower plant has design discharge of 60 m ³ /s and net head of 90m. Design Francis turbine for this power plant (number of turbine, specific speed, diameter and setting of turbine). Take turbine efficiency 94%.	
	b)	What are the functions of draft tube?	[2]
8.	Wi	ite about the structure and dimensioning of the power house?	[2+2]

E 3

Examination Control Division 2073 Shrawan

Exam.	New Back (2066 & Later Batch)				
Level	BE	Full Marks	80		
Programme	BCE	Pass Marks	32		
Year / Part	IV/I	Time	3 hrs.		

Subject: - Hydropower Engineering (CE704)

✓ Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt <u>All</u> questions.

✓ The figures in the margin indicate Full Marks.

√ Assume suitable data if necessary.

1. Describe briefly the provision for licencing of Hydropower according to Hydropower Development Policy Nepal, 2058.

[6]

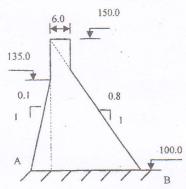
2. Lists out the minimum Checklist for Reconnaissance, prefeasibility and feasibility studies for hydropower development.

[7]

3. The power supplied by the state electricity authority throughout the year by steam power plant are as shown in table below.

[5+5]

Month	Power Supplied (MW)
Jestha	550
asar	500
shrawan	450
bhadra	380
asoj	330
kartik	280
mangsir	250
poush	220
Magh	200
falgun	150
chaitra	145
balsakh	100


But the current demand forced them to have loadshedding. To minimize the loadshedding by providing at least power equivalent to Magh month throughout the year, Authority has decided to import power from neighbouring country for only 3 months i.e. Falgun, Chaitra and Baisakh as 50 MW, 55 MW and 100 MW respectively.

a) Despite importing power, authority felt that they can not provide uniform power of Magh throughout. So they decide to have a diesel plant for deficit. Estimate the minimum capacity

of diesel plant. (Use load duration curve for analysis)

b) If instead of above system (Steam plant +import+diesel plant), Authority has planned to provide the power in near future by constructing ROR hydropower plant by its own to substitute the current model. Derive the Flow duration curve for such new hydro project to supply the power demand given in table. Assume power demand is constant in future. 4. a) Check the stability of dam against overturning, sliding and material failure (stresses) with respect to worst location assuming that in addition to self weight, 25% of mass of dam will act as horizontal component (from upstream side), whereas 15% as upward vertical component as seismic load and will act at the CG of the section.

Assume unit weight of the concrete as 24 kN/m³, Assume unit weight of the concrete as 24 kN/m³, allowable compressive stress in foundation and concrete as 2,500 kN/m² and 3,000 kN m², angle of friction between concrete and foundation as 36° and unit shear resistance between foundation and dam as 700 kN/m². [4+4+2]

- b) Write with neat sketch, expressions for computing seepage and phreatic surface in Earthen dams for two cases; homogeneous and without drain and dam with toe drain. [2+3]
- c) Draw a neat sketch of side intake with all components. How do you calculate hydraulic loss at trash rack? [3+2]
- 5. a) What do you mean by sediment flushing in settling basin? Briefly explain the different type of flushing system used in hydropower in Nepal. [2+4]
 - b) With considering turbulent effect, design a settling basin to remove the sediment size greater than 0.3 mm diameter. Assume design discharge of the basin is 8 m³/s and trap efficiency as 90%. [6]
- 6. a) Derive an expression for minimum upsurge without damping effect in the surge chamber using continuity and momentum equations. [3+7]

In a storage hydropower plant, water is delivered from upper impounding reservoir through low pressure headrace tunnel and three high pressure penstocks to three francis turbine units. The elevation of reservoir and tailwater level are 320 m and 200 m above datum respectively. It is decided to design a simple surge tank between headrace tunnel and penstocks for sudden rejection or demand of two units. If the maximum and minimum water level elevation in the surge tank is limited to 330 m and 310 m above datum respectively due to topography and construction difficulty, determine the minimum area of surge tank and permissible length of low pressure headrace tunnel to fulfill the design objective.

Given data:

Discharge in tunnel: 100 m³/s

Head race tunnel: diameter-7 m and head loss in tunnel= 10 % of gross head of system.

Penstocks: each length 500 m, diameter 2.5 m, f = 0.016

- b) Write procedure to compute the dimensions of the forebay and write the equations used for such purpose. [3]
- 7. Drawing efficiency curves, discuss the performance characteristics of Pelton and Francis Turbines. What is the advantage of pelton turbine over Francis? Write down the principle behind setting of Francis turbine relative to the tail water level. [2+2+2+2]
- 8. Draw plan and sections of a powerhouse showing various components. Assume a Francis
 Trubine is used in this powerhouse to generate the electricity of 10 MW.

 [4]

Examination Control Division 2072 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	IV / I	Time	3 hrs.

[6]

[8]

[3]

Subject: - Hydropower Engineering (CE704)

✓ Candidates are required to give their answers in their own words as far as practicable.

✓ Attempt <u>All</u> questions.

✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.

1. Discuss about the objectives and strategies of the Hydropower Development Policy-2001 (2058 BS) of Nepal.

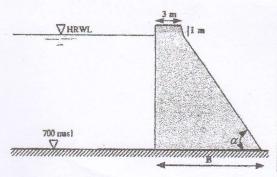
2. Highlight the major studies and investigations carried out during reconnaissance, prefeasibility and feasibility studies.

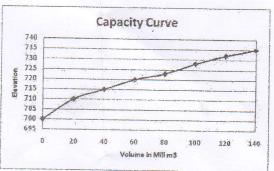
3. A hydropower plant is to be planned in a Nepalese river, where the mean monthly flows for a typical year are as follows:

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
$O(m^3/s)$	4.4	3.9	3.4	4.2	5.6	16.5	78.1	108.9	52.8	22.0	9.9	6.4

Other data pertaining to the plant are as follows:

Design Discharge


Full Supply Level


= 2250 masl

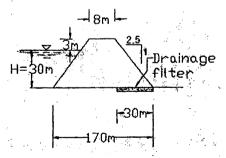
- Turbine Center line
- = 1650 masl
- Dia of 4.0 km long tunnel = 3.0 m, f=0.014
- Dia of 1.0 km long penstock = 2.2 m, f=0.012
- Hydraulic Efficiency, 95%; turbine efficiency, 93%; Generator Efficiency; Transformer efficiency, 99%

Considering only Frictional loss,

- a) Compute installed capacity, primary and secondary energy to be produced from the power plant assuming that 10% minimum flow to be released downstream. What is plant factor?
- b) The developer is interested to develop a daily peaking reservoir for 4 hours. What will be the capacity of the reservoir to satisfy daily peaking requirement?
- 4. a) A concrete gravity dam shown in figure below was constructed for development of hydropower project. The dam has a vertical upstream and inclined downstream face. The highest regulated water level (HRWL) of the dam is fixed at 1 m below the top crest level. At HRWL, the storage capacity of reservoir created by the dam is 60 mill m³. The reservoir capacity curve of the dam is shown in figure below. In a flood situation the 80 m long dam creat can serve as a spillway to discharge the flood. Assume density of concrete $\gamma_C = 24 \text{ KN/m}^3$ and the friction angle between the dam and foundation $\phi = 43^{\circ}$. [3+5+3+5]

- a) Find all main forces acting on the dam when the water level in the reservoir is at HRWL. Give your answer in terms of base width "B".
- b) Find the bottom width "B" and downstream inclined angle α, if dam is at state of moment equilibrium with respect to downstream dam toe. Use a factor of safety against overturning as 1.4.
- c) Is the dam free from tensile stress? Find the required unit shear resistance (cohesion) if the shear safety factor of the dam is $F_{SF}=2.5$.
- d) In a flood event the dam shown on figure overtopped but didn't fail. The outflow discharge over the dam crest was estimated to 320 m3/s. During this time, the reservoir water level was raised to 722.5 masl(m above sea level). Find the discharge coefficient and give your comments of the value.
- b) Drawing a neat sketch of Hydropower Intake, show major components. How do you minimize headloss in intake? [3+1]
- 5. Draw a neat sketch of ROR plant Headworks showing each component clearly in plan and section. Describe briefly the general requirements of such headworks for optimum functions for sediment loaded rivers.

 [6+6]
- 6. a) Discuss various tunnelling methods used in Hydropower projects. Why do you provide tunnel supports? How are they realized? [4+2+2]
 - b) Explain with mathematical expression the optimization of penstock. [4]
- 7) A Francis turbine works under a head of 40 m and discharge Q = 10 m³/s. The speed of the runner is 300 rpm. At the inlet tip of the runner vane, the speed ratio is K_u=0.85 and flow ratio K_f=0.3. If the overall efficiency and hydraulic efficiency of turbine are 80% and 90% respectively. Assume discharge at the outlet is radial and velocity of flow is constant.
 [2+2+1+2+1+4]
 - a) power developed in KW.
 - b) Diameter and width of runner at inlet.
 - c) guide vane angle at inlet.
 - d) specific speed of turbine.
 - e) diameter of runner at outlet.
 - Dimension suitably the powerhouse (length, breadth and height) with sketch, if three such turbines were used in a power plant. Assume suitably any requirements for calculations.



Examination Control Division 2072 Kartik

Exam.	New Back (2066 & Later Batch)				
Level	BE	Full Marks	80		
Programme	BCE	Pass Marks	32		
Year / Part	IV / I	Time	3 hrs.		

Subject: - Hydropower Engineering (CE704)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. Discuss about the advantages and disadvantages of hydropower projects comparing to other sources of energies. [6]
- 2. What are the different stages of hydropower development? Explain the working principle of peaking run off river plant and show general arrangements of components with neat sketches. [2+3+3]
- 3. a) What do you mean by sediment yield and life of a reservoir? Explain various remedial measures that help to reduce the reservoir sedimentation. [1+3]
 - b) A hydropower plant receives design discharge of 25 m³/s from 150 m height. The annual output of the plant is 220 GWh. If he peak load demand is 30 MW, determine (i) annual load factor (ii) Capacity factor and (iii) Utilization factor. Assume overall efficiency of the plant equals to 85% and neglect head loss in the penstock. [2+2+2]
- 4. a) Following Figure shows the cross-section of an earthen dam having coefficient of permeability 1×10⁻⁶ m/s. Calculate the seepage discharge through the body of the dam with the help of phreatic line.
 [8]

- b) Write the purpose of use of filter material in earthen dam. Explain its design principle. [4]
- c) What are the factors to be considered in the dam site evaluation? Describe the different failure modes of a gravity dam? [4+4]
- 5. a) Find the dimensions of a settling basin for a high head project of Himalayan River which utilizes a discharge of 60 m³/s and a gross head of 100m. The sediment size to be removed is up to 0.15 mm. Consider the turbulence effect also. Draw the plan and section.

 [5+2]
 - b) What are the requirements of good intake? Explain different types of intake used in hydropower projects in Nepal with neat sketches. [2+3]

υ.	aj	with neat sketches.	[4]
	b)	In a hydropower project, the headrace tunnel of 4.5 m diameter and 2,500 m length carries 25 m^3 /s discharges to the surge tank of 10 m diameter. The penstock from surge tank to power house has 3.5 m diameter and 1000 m length. Considering the case of instantaneous closure, find the maximum height of surge tank required and time period of oscillation of wave. Assume friction factor = 0.02 .	[8]
7.	a)	Determine the size and setting height of the Francis turbine for a site having net head of 150 m, discharge is 160 m ³ /s and efficiency of 85%.	[4]
	b)	Water is being supplied to a pelton wheel under a head of 300 m through a 100 mm diameter pipes. If the quantity of water supplied to the wheel is 1.50 m ³ /s, find the number of jets in the wheel. Assume coefficient of velocity is 0.96.	[4]
8.		nat are the different types of power houses used in hydropower? Explain their relative tability considering the field conditions.	[4]

Examination Control Division 2071 Chaitra

Exam.			
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	IV / I	Time	3 hrs.

Subject: - Hydropower Engineering (CE704)

- Candidates are required to give their answers in their own words as far as practicable.
- Attempt All questions.
- The figures in the margin indicate Full Marks.
- Assume suitable data if necessary.
- 1. Discuss the advantages and disadvantages of hydropower over other sources of energy.

[3+3]

2.. Differentiate between pre-feasibility and feasibility studies of a hydropower project with explaining the site specific hydrological and topographical investigations.

[8]

3. a) A hydropower project is planned to develop in a Nepalese River having net head of 150 m, turbine efficiency of 90% and generator efficiency of 95% with the monthly [3+2+3] hydrograph as shown below:

Months	•	1	1	,	i					1		
Q (m ³ /sec)	100	80	60	50	40	30	40	50	70	110	150	120

As an environmental flow, a minimum flow of 10% of each month is mandatory.

If the storage project is designed with full regulation of annual hydrograph find out: the capacity of the reservoir; installed capacity of the power plant, and annual energy generation.

a) Design an elementary profile of a gravity dam made of stone masonry using following

[8]

R.L of base of dam = 198 m

HFL = 228 m

Sp. gravity of masonry = 2.4

Safe compressive stress in masonry = 1200 KN/m^2

 $\tan \phi = 0.70$

Seepage coefficient = 1

b) Show with neat sketch, various seepage control measures in embankment dam.

[6]

c) Discuss with sketch the arrangement and suitability of 3 different types of spillways used in a headworks.

[2×3]

Differentiate between pressurized and non-pressurized intakes in RoR system.

[3]

esign the settling basin from the particle size and concentration approach and calculate the trap efficiency from the following data. (Refer figure 3 &4)

[8]

Design discharge = 80 m³/s

Number of basin = 2

Installed capacity of the plant = 110 MW

Water temperature = 12°C

Particle size to be removed = 0.2 mm

Manning's constant (n) = 0.01

Flushing discharge = 1 m³/s

(If flushing system is continuous)

Assume other necessary data if needed. If the flushing system is changed to intermittent with single basin what are the changes, describe with suitable reason.

c) What are minimum performance standards of the sound headworks.

[3]

[7+1]

[4]

- 6. a) Design a forebay using following data sets:
 - $Q = 15 \text{ m}^3/\text{s}$

Storage requirements = 4 minutes

Length of penstock = 500 m

Diameter of penstock = 2 m

- b) Discuss various tunneling methods used in Hydropower projects. What is the purpose of shotcreting? Discuss the procedure. [4+2+2]
- 7. Design a pelton wheel turbine for a hydropower plant having net head of 310 m and
- discharge of 5m³/s. Take the efficiency of the turbine as 90%. What will be the specific speed of such turbine?
- 8. Describe with sketch different types of power house and their general arrangement.

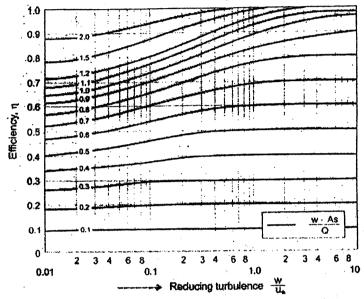


Figure 3: Camps Diagram

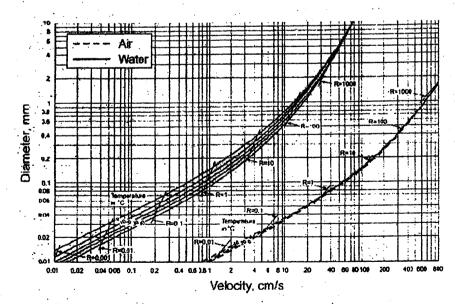


Figure 4: Fall velocity of quartz spheres in water and air after Rouse

Examination Control Division 2070 Chaitra

Exam.		Regular	
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	IV / I	Time	3 hrs.

Subject: - Hydropower Engineering (CE704)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Necessary figures are attached herewith.
- ✓ Assume suitable data if necessary.
- 1. a) "Most of the political parties of Nepal are determined to avoid Load Sheding during 5 years in their menufesto" Do you agree with their commitment during this period? What approach need to be taken for hydropower development in Nepal to meet the demand rate up to 2020.

[2+3]

b) Explain site specific hydrological, geological and topographical investigations to be carried out during the pre feasibility study level of a hydropower project.

[5]

2. Hydropower project is planned to develop in a river having net head of 100 m and overall efficiency of 85% with the monthly hydropgraph as shown below.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Discharge	100	120	140	300	320	1800	2000	2500	2100	900	500	300

- i) Calculate installed capacity, annual spill energy and firm energy if RoR project is designed based on the 40% probability of exceedence flow. [2+2+2]
- ii) If the storage project is developed with full regulation of annual hydrograph (design discharge is equal to average monthly flow), Calculate the storage requirements. [2]
- iii) Calculate the installed capacity and annual energy generation from the storage project as mentioned in above case. [2+2]
- 3. a) Show that the resultant force in a concrete gravity dam should pass within the middle third of the base width in order to avoid tension in the heel. [6]
 - b) Design a hydraulic jump stilling basin at the toe of the spillway with the following data; [9]

Discharge = $80 \text{ m}^3/\text{s}$

Width of the spillway = 8m

Spillway crest level = 96.00m

River bed level = 65.00m

Tril water level = 71.00 m

Coefficient of discharge = 0.7

Downstream bed slope (i) = 1:500 and Manning's roughness coefficient = 0.016 and ratio of length of stilling basin and sequent depth = 5.1

- c) Explain very briefly three types of gates and its working mechanism with sketches widely practiced in hydropower projects in Nepal.
- d) Determine the seepage discharge for the earthen dam having 33 m total height with 3m width impervious central core. Take top width of the dam is 7m and freeboard 3m. The coefficient of permeability of dam material is 4×10^{-6} m/sec and that of impervious core is 4×10^{-8} m/sec. The upstream and downstream slope of the dam is 3:1 and 2.5:1 respectively.

[5]

[1+3]

4. a) Find out the dimension of a continuous flushing settling basin for a high head project in Himalayan River which utilizes a discharge of 60 m³/s and head of 300 m the sediment particles larger than 0.15 mm have to be trapped efficiency 95% in the basin. Consider the effect of the turbulence and check the length of basin using Valikanov's relation of the density of the silty water of 1.105 ton/m³. Draw plan and [6+3]section of the basin showing major components. b) Explain the general requirements of a functional ROR headworks. [3] What do you mean by hydraulic design of tunnel? Explain the selection criteria of tunnel alignment. [2+2]b) What are the design considerations of Forebay? Design a Forebay with turbine discharge 12m³/sec, water is conveyed from Forebay to powerhouse by two number of penstock of 2 m diameter each. Take retention time 3 minute and limiting velocity [2+4]0.2 m/sec. c) Why restricted origice type is more efficient than simple cylindrical type. [2] 6. a) Design specific speed, turbine diameter and setting of the Francis turbine in a hydropower project having net head of 150 m and design discharge of 25 m³/sec. Take turbine efficiency 81%. [2+2+2]b) What are the conditions Francis turbines are preferable than Pelton turbine? [4]

Examination Control Division 2070 Ashad

Exam.	New Back (2	066 & Later	Batch)
Level	BE	Full Marks	80
Programme	BCE	Pass Marks	32
Year / Part	IV / I	Time	3 hrs.

Subject: - Hydropower Engineering (CE704)

- ✓ Candidates are required to give their answers in their own words as far as practicable.
- ✓ Attempt All questions.
- ✓ The figures in the margin indicate Full Marks.
- ✓ Assume suitable data if necessary.
- 1. List out the major features of Hydropower Development policy 2001. Is the policy able to attract private sector? Write your comments.
- 2. a) Drawing neat sketch (plan and section with all components), discuss the principal characteristics of diversion type storage hydropower plant.
 - b) Highlight the major studies and investigations carried out during reconnaissance, prefeasibility and feasibility studies.
- 3. The mean monthly flow of a typical Nepalese river is as follows:

[2+4+2]

[6]

[4]

[4]

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
$Q (m^3/s)$	80	(74)	83	100	130	222	600	800	590	240	120	100

- i) Calculate the installed capacity of a plant based on minimum flow of the river without pondage (if the plant is designed for pure run of river plant) with net head of 200 m and overall efficiency of a plant is 85%.
- ii) The plant has three sets of units (turbine and generator) such that one unit with full capacity is operated during off peak hour. If the plant is designed for a peaking plant with 4 hour peaking (morning 2 hour and evening 2 hour), what will be the installed capacity of a plant?
- iii) What will be the increase in benefit from peaking if peak hour energy rate is Rs 12/kWh and off peak energy rate is Rs 6/kWh during minimum flow month?
- 4. a) A concrete gravity dam on the rocky foundation is acted by the upstream horizontal hydrostatic force of 4.50 million KN and by the downstream the same of 0.50 million KN. Determine the volume of concrete works (r_{con} = 24 KN/m³), neglecting bond stress and up lift force and taking a factor of safety on the horizontal thrust of 2.5 and a friction coefficient between the concrete and rock of 0.65.
 - b) Write with necessary sketch and their hydraulies, any three types of spillways used in a head works of a hydropower plant.
 - c) Explain causes of failure of earthen dam. What criteria do you adopt for safe design of earthen dam? [2+4]
- 5. a) Discuss the requirements of a functional RoR headworks. Drawing a typical plan of such headworks, discuss how these requirements are fulfilled. [2+3]
 - b) Find out the dimension of a settling basin with turbulent flow for a high-head hydropower plant, which utilizes a discharge of 40 m³/s. The sediment particles coarser than 0.15 mm ($\omega = 1.5$ cm/s) have to be trapped in the basin. Draw plan and sections (cross and longitudinal) showing major components and flushing arrangement. [3+3]
 - c) If you have allocated about 10% volume for sediment storage and overall trapping efficiency of settling basin is 40%, find out the frequency of flushing of settling basin, when the sediment concentration is 2000 ppm.

[3]

[8]

[6]

Terreronx remember of the remainst remember of the remainst remember of the remainst remainst

- 6. a) The design discharge through the tunnel of a hydropower project is 60 m³/s is conveyed by three number of penstock to the turbine of 2 m diameter each. Take the length of tunnel is 7 km, diameter of tunnel is 10 m, friction factor of tunnel is 0.016, friction factor of penstock = 0.04 and velocity of wave in penstock = 1800 m/sec. If the surge tank of 30 m diameter has been provided at the end of the tunnel, find the following: (i) maximum up-surge and down-surge in the tank (ii) water hammers pressure (iii) Time of oscillation of wave. [4+2+2]
 - b) Discuss with sketch, types of tunnel supports and their necessity?

[3+1]

- 7. What do you mean by setting of turbine? The pipe line 1200 meter supplies water to 3 single jet pelton wheels. The need above the nozzle is 360 m. The velocity coefficient for the nozzle is 0.98 and the coefficient of the friction for the pipe line is 0.02. The turbine efficiency is 0.85. The specific speed of turbine is 15.3 rpm and loss head is 18 meter in pipeline due to friction. If the operating speed of each turbine is 560 rpm, determine (i) Total power developed (ii) Discharge (iii) Diameter of each jet and diameter of pipe line.
- 8. Drawing a section of vertical axis Francis turbine in a powerhouse, show the different parts of powerhouse structure.

[4]

Examination Control Division 2069 Chaitra

Exam.	Regular						
Level	BE	Full Marks	80				
Programme	BCE	Pass Marks					
Year / Part	IV / I	Time	3 hrs.				

Subject: - Hydropower Engineering (CE704)	***************************************
 ✓ Candidates are required to give their answers in their own words as far as practicable. ✓ Attempt <u>All</u> questions. ✓ The figures in the margin indicate <u>Full Marks</u>. ✓ Assume suitable data if necessary. 	
What are the objectives of Hydropower Development Policy 2001? Explain five a features provisioned in Hydropower Development Policy 2001 for the development hydropower in Nepal.	
2. a) Prepare a three alternative layouts plan and sectional drawings of the l Hydropower plants.b) What are the stages of hydropower development cycle?	ROR [6] [2]
 4. a) Draw uplift pressure diagram (i) for dam holding 50 m water depth at upstream vertical face with top and bottom width 10 m and 30 m respectively. Uplift matconsidered to be acting an 60% of the area of section. Tail water depth is 5 m. (ii the same dam there is a drainage gallery at 6 m from face. b) The u/s and d/s slope of a homogeneous earthen dam with 12m toe drain are 2:1 3:1 (H:V) respectively. The water depth at u/s of dam is 50m. The dam has a width of 20m and free board is of 5m. The coefficient of permeability of dam mat is 2.5 cm/hr calculate (i) Specific discharge through the body of dam (ii) co-ordinate of phreatic line. 	ream y be) for [3+2] and crest erial inate [10]
c) With appropriate drawings illustrate the general arrangement of intake for sto plants.	rage [5]
5. a) How are the control of bed load and floating debris in ROR intake done? Explain appropriate plan and sectional drawings of the system.b) Compute the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering and with the dimension of periodic type settling basin considering the dimension of periodic type settling basin considering the dimension of periodic type settling the dimension of periodic type settli	[6] hout
considering the turbulence effect for a hydropower plant through settling the Take, Settling velocity = 6 cm/sec Discharge = 5m ³ /sec Particle size to be removed = 0.2 mm Depth of basin = 2.4 m	eory. [8]
6. a) A power station is fed by a 4000m long concrete lined tunnel of 5.0 m dia and 60 long pressure shaft of 4.0 m dia operating under a gross head of 250 m. If the de discharge of the plant is 60 m ³ /sec and the friction factors in tunnel and pressure are 0.014 and 0.012 respectively,	sign
 i) Compute the sectional area required for mass oscillation in a surge tank ii) Maximum upsurge and downsurge levels iii) If the headwater level is 1048 m, find out the invert level of the headrace tunn 	[3] [3] el at
surge tank b) Explain the importance of tunnel lining.	[3] [3]
 Discuss the various types of reaction and impulse turbines used in a hydropower p Discuss their suitability and major performance characteristics. Discuss the arrangement in a typical surface powerhouse. How do you compute the b 	[8]
dimensions of such building?	[2+2]